organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2R,3aS,5aR,8aR,8bS)-4-Bromo-2-(4methoxyphenyl)-7.7-dimethyl-3a.5a.-8a,8b-tetrahydrobenzo[1,2-d:3,4-d']bis[1,3]dioxole

Martin G. Banwell,* Okanya J. Kokas and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia Correspondence e-mail: mgb@rsc.anu.edu.au

Received 8 August 2007; accepted 8 August 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.078; data-to-parameter ratio = 13.9.

The title compound, C₁₇H₁₉BrO₅, bears an *exo*-orientated or *R*-configured 4-methoxyphenyl group and incorporates a C-O bond that is distinctly shorter than the three remaining acetal C-O bonds [1.415 (4) versus 1.431 (4)-1.448 (4) Å and 1.421 (4) versus 1.436 (4)–1.448 (4) Å for the two molecules in the asymmetric unit].

Related literature

For related literature, see: Banwell et al. (2003); Boyd et al. (1991); Hulme et al. (2005).

Experimental

Crystal data

C17H19BrO5 $M_{\rm m} = 383.24$ Monoclinic, P21 a = 5.2285 (1) Å b = 33.4467 (9) Åc = 9.4726 (3) Å $\beta = 91.7226 \ (12)^{\circ}$

V = 1655.78 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.51 \text{ mm}^{-1}$ T = 200 K0.45 \times 0.14 \times 0.05 mm

Data collection

```
Nonius KappaCCD diffractometer
Absorption correction: integration
  via Gaussian method (Coppens,
  1970) implemented in maXus
  (Mackay et al., 1999)
  T_{\min} = 0.546, T_{\max} = 0.892
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom param
$wR(F^2) = 0.078$	$\Delta \rho_{\rm max} = 0.58$ c
S = 0.97	$\Delta \rho_{\min} = -0.82$
5796 reflections	Absolute struc
416 parameters	2828 Friede
1 restraint	Flack paramet

20604 measured reflections 5796 independent reflections 4970 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: CRYS-TALS.

We thank the Australian Research Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2471).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Banwell, M. G., Edwards, A. J., Harfoot, G. J., Jolliffe, K. J., McLeod, M. D., McRae, K. J., Stewart, S. G. & Vögtle, M. (2003). Pure Appl. Chem. 75, 223-229.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Boyd, D. R., Dorrity, M. R. J., Hand, M. V., Malone, J. F., Sharma, N. D., Dalton, H., Gray, D. J. & Sheldrake, G. N. (1991). J. Am. Chem. Soc. 113, 666-667
- Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hulme, A., Compton, T., Parsons, S. & Messenger, D. (2005). Private communication (refcode NASZAJ). CCDC, Union Road, Cambridge, England
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, The Woodlands, TX 77381, USA.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Acta Cryst. (2007). E63, o3820 [doi:10.1107/S1600536807039232]

(2*R*,3a*S*,5a*R*,8a*R*,8b*S*)-4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8b-tetrahydrobenzo[1,2-*d*:3,4-*d*']bis[1,3\]dioxole

M. G. Banwell, O. J. Kokas and A. C. Willis

Comment

As part of a program directed towards exploiting microbially derived and enantiomerically pure *cis*-1,2-dihydrocatechols in the synthesis of certain biologically active natural products (Banwell *et al.*, 2003), we generated an epimeric mixture of compounds (I) and (II) then subjected this to reaction with DIBAL-H. At 195–233 K one of these two benzylidene acetals participated more readily in the anticipated reductive cleavage reaction leading to the desired *p*-methoxybenzyl ether (III). The unreacted epimer was recovered and subjected to single-crystal X-ray analysis and thus establishing that it was compound (II) incorporating an *exo*-orientated or *R*-configured 4-methoxyphenyl group at C2. This outcome is consistent with the notion that the reactive epimer (I) can, by virtue of reduced steric effects, complex DIBAL-H at the O1-acetal oxygen more readily than (II) and thus engage, selectively, in the ring-cleavage process leading to target (III). The present structure represents only the second reported for a 4-methoxyphenylacetal derivative of a *cis*-cyclohexane-1,2-diol (Hulme *et al.*, 2005).

The crystallographic asymmetric unit within the solid-state structure of compound (II) consists of two independent molecules. The compound is enantiomerically pure and its absolute configuration has been determined by refinement of the Flack parameter. The outcome of this determination is in agreement with that predicted on the basis of the absolute configuration of the precursor, *viz.* (1*S*,2*S*)-3-bromo-3,5-cyclohexadiene-1,2-diol (Boyd *et al.*, 1991). The three non-aromatic rings within the title compound are each close to planar and with the two 1,3-dioxolane rings clearly attached to the opposite faces of the central cyclohexene residue. The allylic and homo-allylic C–O bonds associated with the two heterocyclic rings are all of similar length (1.430–1.438 Å) but the C2–O3 bond is notably shorter than the three remaining acetal carbon to oxygen bonds (1.418 *vs* 1.438–1.444 Å) within the molecule. The origins of this variation are unclear at the present time.

Experimental

A magnetically stirred solution of a 5:3 mixture of the benzylidene acetals (I) and (II) (88 mg, 0.23 mmol) in anhydrous dichloromethane/pentane (1.4 ml of a 1:1 v/v mixture) was cooled to 195 K then treated, dropwise, with DIBAL-H (1.15 ml of a 1.0 *M* solution in dichloromethane). The resulting mixture was warmed to 233 K and after 6 h at this temperature was treated with sodium potassium tartrate (5 ml of a 1 *M* aqueous solution). The ensuing mixture was allowed to stir at 291 K for 2 h then the separated aqueous fraction was extracted with dichloromethane (3 × 40 ml). The combined organic phases were washed with brine (1 × 50 ml) then dried (MgSO₄), filtered and concentrated under reduced pressure to give a clear, colourless oil. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetate/hexane elution) afforded two fractions, A and B.

Concentration of fraction A ($R_f = 1/5$) under reduced pressure afforded the benzyl ether (III) [41 mg, 74% based on available (I)] as a clear, colourless oil, [α]_D –59.9 (*c* 0.05, CHCl₃) (Found: M^+ , 384.0570. $C_{17}H_{21}^{79}BrO_5$ requires M^+ , 384.0572). ¹H NMR (300 MHz, CDCl₃) δ 7.33 (2*H*, d, *J* = 8.7 Hz), 6.90 (2*H*, d, *J* = 8.7 Hz), 6.24 (1*H*, d, *J* = 3.6 Hz), 4.84

 $(1H, d, J = 10.8 \text{ Hz}), 4.68-4.61 (2H, complex m), 4.36 (2H, m), 4.15-4.10 (2H, complex m), 3.81 (3H, s), 1.43 (3H, s), 1.36 (3H, s); ¹³C NMR (75 MHz, CDCl₃) <math>\delta$ 159.8, 130.1, 129.9, 128.6, 124.2, 114.1, 110.1, 77.9, 75.4, 74.0, 73.4, 70.5, 55.5, 28.1, 26.2 (one signal obscured or overlapping); v_{max} (NaCl)/cm⁻¹ 3460, 2924, 1612, 1516, 1464, 1254, 1089, 1046; MS (EI, 70 eV) 386 and 384 (M^{+} , both 3%), 256 (7), 137 (20), 121 (100), 101 (20), 81 (37), 69 (81), 55 (42), 43 (53).

Concentration of fraction B ($R_f = 0.30$) under reduced pressure afforded a solid that upon recrystallization (diethyl ether) gave the acetal (II) (30 mg, 90% recovery) as white plates, m.p. = 649–651 K, [α]_D = +49.4 (*c* 0.21, CHCl₃) [Found: ($M - H^{+}$)⁺, 381.0334. C₁₇H₁₉⁷⁹BrO₅ requires ($M - H^{+}$)⁺, 381.0338]. ¹H NMR (300 MHz, CDCl₃) δ 7.40 (2*H*, d, *J* = 8.4 Hz), 6.79 (2*H*, d, *J* = 8.4 Hz), 6.25 (1*H*, d, *J* = 3.6 Hz), 5.86 (1*H*, s), 4.91 (1*H*, d, *J* = 6.0 Hz), 4.64–4.60 (3*H*, complex m), 3.73 (3*H*, s), 1.40 (3*H*, s), 1.38 (3*H*, s); v_{max} (NaCl)/cm⁻¹ 2979, 2896, 1647, 1615, 1589, 1517, 1382, 1337, 1249, 1220, 1175, 1090, 1060, 1025, 948, 832; MS (EI, 70 eV) 384 and 382 (M^{+} , both 15%), 383 and 381 [($M - H^{+}$)⁺, both 29], 336 and 334 (both 2), 200 (16), 161 (31), 137 (38), 136 (60), 135 (100), 108 (53), 77 (29), 43 (52).

Refinement

Hydrogen atoms were included at calculated positions and ride on the atoms to which they are bonded. The biggest features in a final difference electron density map are close to the Br atoms.

Figures

Figure 1. Anisotropic displacement ellipsoid plot of $C_{17}H_{19}BrO_5$ (molecule one) with labelling of selected atoms. Ellipsoids show 50% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure 2. Anisotropic displacement ellipsoid plot of $C_{17}H_{19}BrO_5$ (molecule two) with labelling of selected atoms. Ellipsoids show 50% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure 3. Unit cell packing diagram of $C_{17}H_{19}BrO_5$ projected down the *a* axis. Hydrogen atoms are drawn as circles with small radii.

(2R,3aS,5aR,8aR,8bS)- 4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8b-tetrahydrobenzo[1,2 - d:3,4 - d']bis[1,3]dioxole

Crystal data

 $C_{17}H_{19}BrO_5$

$M_r = 383.24$	$D_{\rm x} = 1.537 \ {\rm Mg \ m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.2285 (1) Å	Cell parameters from 55931 reflections
b = 33.4467 (9) Å	$\theta = 2.6 - 25^{\circ}$
c = 9.4726 (3) Å	$\mu = 2.51 \text{ mm}^{-1}$
$\beta = 91.7226 \ (12)^{\circ}$	T = 200 K
V = 1655.78 (7) Å ³	Plate, colourless
Z = 4	$0.45\times0.14\times0.05~mm$

Data collection

Nonius KappaCCD diffractometer	4970 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 200 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans with CCD	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: integration via Gaussian method (Coppens, 1970) implemented in maXus (Mackay <i>et al.</i> , 1999)	$h = -6 \rightarrow 6$
$T_{\min} = 0.546, \ T_{\max} = 0.892$	$k = -39 \rightarrow 39$
20604 measured reflections	$l = -11 \rightarrow 11$
5796 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters not refined
$R[F^2 > 2\sigma(F^2)] = 0.034$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.03P)^2 + 0.44P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
$wR(F^2) = 0.078$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
5796 reflections	$\Delta \rho_{min} = -0.82 \text{ e } \text{\AA}^{-3}$
416 parameters	Extinction correction: None
1 restraint	Absolute structure: Flack (1983), 2828 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.012 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3464 (5)	0.40867 (9)	0.5958 (3)	0.0442
C2	0.2738 (7)	0.40850 (12)	0.7402 (4)	0.0359
O3	0.0221 (5)	0.39302 (8)	0.7424 (3)	0.0393
C4	-0.0224 (7)	0.37075 (11)	0.6148 (4)	0.0358
C5	0.0579 (8)	0.32792 (11)	0.6278 (4)	0.0382

C6	0.2260 (8)	0.30950 (12)	0.5503 (4)	0.0384
C7	0.3623 (7)	0.32944 (11)	0.4320 (4)	0.0345
O8	0.3249 (5)	0.30663 (8)	0.3051 (2)	0.0349
C9	0.1349 (7)	0.32616 (11)	0.2148 (4)	0.0348
O10	0.0409 (5)	0.35852 (8)	0.2978 (2)	0.0374
C11	0.2475 (7)	0.37002 (11)	0.3917 (4)	0.0364
C12	0.1353 (7)	0.39397 (12)	0.5098 (4)	0.0360
C13	0.2790 (7)	0.44947 (11)	0.8044 (4)	0.0333
C14	0.1061 (8)	0.47884 (12)	0.7616 (4)	0.0402
C15	0.1102 (8)	0.51620 (12)	0.8225 (4)	0.0408
C16	0.2883 (7)	0.52469 (11)	0.9305 (4)	0.0347
C17	0.4642 (8)	0.49634 (12)	0.9723 (4)	0.0422
C18	0.4595 (8)	0.45874 (12)	0.9093 (4)	0.0408
Br19	-0.11756 (10)	0.29887 (3)	0.76809 (4)	0.0609
C20	-0.0808 (7)	0.29762 (13)	0.1827 (4)	0.0448
C21	0.2636 (8)	0.34112 (13)	0.0852 (4)	0.0465
O22	0.2709 (5)	0.56229 (8)	0.9893 (3)	0.0439
C23	0.4571 (9)	0.57223 (12)	1.0977 (4)	0.0480
O101	0.8242 (5)	0.60404 (8)	0.6747 (3)	0.0444
C102	0.7448 (7)	0.60523 (11)	0.5282 (4)	0.0356
O103	0.4861 (5)	0.61825 (8)	0.5250 (3)	0.0392
C104	0.4501 (7)	0.64154 (11)	0.6503 (4)	0.0353
C105	0.5211 (7)	0.68426 (11)	0.6330 (4)	0.0337
C106	0.6957 (7)	0.70409 (11)	0.7083 (4)	0.0352
C107	0.8556 (7)	0.68488 (11)	0.8242 (4)	0.0325
O108	0.8519 (4)	0.70848 (9)	0.9508 (2)	0.0342
C109	0.6632 (7)	0.69170 (12)	1.0426 (4)	0.0358
O110	0.5563 (5)	0.65805 (8)	0.9668 (2)	0.0378
C111	0.7488 (8)	0.64532 (11)	0.8725 (4)	0.0363
C112	0.6229 (8)	0.61987 (12)	0.7581 (4)	0.0362
C113	0.7651 (7)	0.56493 (11)	0.4605 (4)	0.0323
C114	0.6019 (8)	0.53372 (12)	0.4985 (4)	0.0399
C115	0.6187 (8)	0.49680 (11)	0.4347 (4)	0.0388
C116	0.7973 (7)	0.49055 (11)	0.3318 (4)	0.0355
C117	0.9609 (8)	0.52082 (12)	0.2951 (4)	0.0414
C118	0.9423 (7)	0.55802 (12)	0.3611 (4)	0.0392
Br119	0.32031 (9)	0.71174 (3)	0.49172 (4)	0.0513
C120	0.4578 (8)	0.72146 (13)	1.0659 (5)	0.0527
C121	0.7960 (9)	0.67800 (14)	1.1778 (4)	0.0505
0122	0.7948 (6)	0.45324 (8)	0.2698 (3)	0.0429
C123	0.9839 (9)	0.44560 (13)	0.1674 (4)	0.0483
H21	0.3917	0.39055	0.7960	0.0430*
H41	-0.2078	0.37220	0.5861	0.0429*
H61	0.2651	0.28080	0.5711	0.0459*
H71	0.5489	0.33217	0.4563	0.0414*
H111	0.3748	0.38645	0.3405	0.0436*
H121	0.0332	0.41686	0.4701	0.0432*
H141	-0.0240	0.47275	0.6851	0.0480*
H151	-0.0141	0.53715	0.7893	0.0487*

H171	0.5957	0.50268	1.0478	0.0504*
H181	0.5880	0.43815	0.9403	0.0487*
H201	-0.0197	0.27581	0.1198	0.0536*
H202	-0.2251	0.31227	0.1341	0.0536*
H203	-0.1412	0.28577	0.2727	0.0536*
H211	0.1346	0.35471	0.0216	0.0560*
H212	0.4012	0.36053	0.1135	0.0560*
H213	0.3405	0.31807	0.0343	0.0560*
H231	0.4256	0.60002	1.1320	0.0576*
H232	0.6324	0.57057	1.0587	0.0576*
H233	0.4434	0.55302	1.1780	0.0576*
H1021	0.8522	0.62490	0.4770	0.0427*
H1041	0.2679	0.63956	0.6788	0.0424*
H1061	0.7226	0.73307	0.6875	0.0424*
H1071	1.0354	0.68137	0.7934	0.0391*
H1111	0.8841	0.62966	0.9249	0.0436*
H1121	0.5266	0.59745	0.8019	0.0436*
H1141	0.4723	0.53827	0.5723	0.0480*
H1151	0.5024	0.47460	0.4625	0.0465*
H1171	1.0916	0.51623	0.2219	0.0499*
H1181	1.0616	0.57999	0.3348	0.0472*
H1201	0.5305	0.74480	1.1196	0.0633*
H1202	0.3854	0.73078	0.9727	0.0633*
H1203	0.3194	0.70884	1.1213	0.0633*
H1211	0.6672	0.66636	1.2420	0.0606*
H1212	0.8821	0.70132	1.2252	0.0606*
H1213	0.9267	0.65726	1.1558	0.0606*
H1231	0.9627	0.41776	0.1303	0.0580*
H1232	0.9630	0.46507	0.0878	0.0580*
H1233	1.1584	0.44861	0.2123	0.0580*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0511 (17)	0.0465 (17)	0.0355 (14)	-0.0169 (13)	0.0087 (13)	-0.0127 (13)
0.035 (2)	0.039 (2)	0.034 (2)	-0.0014 (17)	-0.0008 (16)	-0.0041 (17)
0.0432 (16)	0.0415 (15)	0.0333 (14)	-0.0120 (13)	0.0064 (11)	-0.0104 (12)
0.037 (2)	0.039 (2)	0.0318 (19)	-0.0038 (17)	-0.0044 (16)	-0.0093 (16)
0.050 (3)	0.032 (2)	0.031 (2)	-0.0090 (18)	-0.0070 (18)	-0.0013 (17)
0.051 (2)	0.032 (2)	0.032 (2)	0.0052 (17)	-0.0079 (17)	0.0006 (16)
0.037 (2)	0.033 (2)	0.033 (2)	0.0052 (17)	-0.0006 (17)	-0.0070 (17)
0.0360 (14)	0.0368 (16)	0.0312 (13)	0.0076 (11)	-0.0078 (11)	-0.0084 (11)
0.037 (2)	0.036 (2)	0.032 (2)	0.0106 (16)	-0.0030 (16)	-0.0073 (16)
0.0478 (15)	0.0364 (14)	0.0277 (13)	0.0114 (12)	-0.0035 (11)	-0.0080 (11)
0.045 (2)	0.034 (2)	0.0309 (19)	-0.0037 (17)	0.0001 (16)	-0.0034 (16)
0.050 (2)	0.030 (2)	0.0274 (19)	0.0009 (17)	-0.0008 (17)	-0.0041 (15)
0.039 (2)	0.034 (2)	0.0274 (19)	-0.0039 (17)	0.0035 (16)	-0.0057 (16)
0.044 (2)	0.042 (2)	0.034 (2)	0.0015 (19)	-0.0099 (18)	-0.0020 (18)
	U^{11} 0.0511 (17) 0.035 (2) 0.0432 (16) 0.037 (2) 0.050 (3) 0.051 (2) 0.037 (2) 0.0360 (14) 0.037 (2) 0.0478 (15) 0.045 (2) 0.050 (2) 0.039 (2) 0.044 (2)	U^{11} U^{22} $0.0511(17)$ $0.0465(17)$ $0.035(2)$ $0.039(2)$ $0.0432(16)$ $0.0415(15)$ $0.037(2)$ $0.039(2)$ $0.050(3)$ $0.032(2)$ $0.051(2)$ $0.032(2)$ $0.037(2)$ $0.033(2)$ $0.0360(14)$ $0.0368(16)$ $0.0478(15)$ $0.0364(14)$ $0.045(2)$ $0.030(2)$ $0.039(2)$ $0.034(2)$ $0.039(2)$ $0.034(2)$ $0.044(2)$ $0.042(2)$	U^{11} U^{22} U^{33} $0.0511(17)$ $0.0465(17)$ $0.0355(14)$ $0.035(2)$ $0.039(2)$ $0.034(2)$ $0.0432(16)$ $0.0415(15)$ $0.0333(14)$ $0.037(2)$ $0.039(2)$ $0.0318(19)$ $0.050(3)$ $0.032(2)$ $0.031(2)$ $0.051(2)$ $0.032(2)$ $0.032(2)$ $0.037(2)$ $0.036(16)$ $0.0312(13)$ $0.037(2)$ $0.036(2)$ $0.032(2)$ $0.0478(15)$ $0.0364(14)$ $0.0277(13)$ $0.045(2)$ $0.034(2)$ $0.0274(19)$ $0.039(2)$ $0.034(2)$ $0.0274(19)$ $0.044(2)$ $0.042(2)$ $0.034(2)$	U^{11} U^{22} U^{33} U^{12} $0.0511(17)$ $0.0465(17)$ $0.0355(14)$ $-0.0169(13)$ $0.035(2)$ $0.039(2)$ $0.034(2)$ $-0.0014(17)$ $0.0432(16)$ $0.0415(15)$ $0.0333(14)$ $-0.0120(13)$ $0.037(2)$ $0.039(2)$ $0.0318(19)$ $-0.0038(17)$ $0.050(3)$ $0.032(2)$ $0.031(2)$ $-0.0090(18)$ $0.051(2)$ $0.032(2)$ $0.032(2)$ $0.0052(17)$ $0.0360(14)$ $0.0368(16)$ $0.0312(13)$ $0.0076(11)$ $0.037(2)$ $0.036(2)$ $0.032(2)$ $0.0106(16)$ $0.0478(15)$ $0.0364(14)$ $0.0277(13)$ $0.0114(12)$ $0.045(2)$ $0.030(2)$ $0.0274(19)$ $-0.0039(17)$ $0.039(2)$ $0.034(2)$ $0.0274(19)$ $-0.0039(17)$ $0.044(2)$ $0.042(2)$ $0.034(2)$ $0.034(2)$ $0.0015(19)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0511(17)$ $0.0465(17)$ $0.0355(14)$ $-0.0169(13)$ $0.0087(13)$ $0.035(2)$ $0.039(2)$ $0.034(2)$ $-0.0014(17)$ $-0.0008(16)$ $0.0432(16)$ $0.0415(15)$ $0.0333(14)$ $-0.0120(13)$ $0.0064(11)$ $0.037(2)$ $0.039(2)$ $0.0318(19)$ $-0.0038(17)$ $-0.0044(16)$ $0.050(3)$ $0.032(2)$ $0.031(2)$ $-0.0090(18)$ $-0.0070(18)$ $0.051(2)$ $0.032(2)$ $0.032(2)$ $0.0052(17)$ $-0.0079(17)$ $0.037(2)$ $0.033(2)$ $0.032(2)$ $0.0052(17)$ $-0.0078(11)$ $0.0360(14)$ $0.0368(16)$ $0.0312(13)$ $0.0076(11)$ $-0.0078(11)$ $0.037(2)$ $0.036(2)$ $0.032(2)$ $0.0106(16)$ $-0.0030(16)$ $0.0478(15)$ $0.0364(14)$ $0.0277(13)$ $0.0114(12)$ $-0.0035(11)$ $0.045(2)$ $0.030(2)$ $0.0274(19)$ $-0.0039(17)$ $-0.0008(17)$ $0.039(2)$ $0.034(2)$ $0.0274(19)$ $-0.0039(17)$ $0.0035(16)$ $0.044(2)$ $0.042(2)$ $0.034(2)$ $0.0015(19)$ $-0.0099(18)$

C15	0.050 (2)	0.034 (2)	0.038 (2)	0.0044 (18)	-0.0057 (18)	0.0018 (17)
C16	0.045 (2)	0.028 (2)	0.0310 (19)	-0.0050 (17)	0.0054 (16)	-0.0016 (15)
C17	0.044 (2)	0.040 (2)	0.042 (2)	0.0012 (19)	-0.0105 (18)	-0.0111 (18)
C18	0.044 (2)	0.037 (2)	0.041 (2)	0.0050 (18)	-0.0100 (18)	-0.0079 (17)
Br19	0.0886 (4)	0.0553 (3)	0.0393 (2)	-0.0281 (3)	0.0087 (2)	0.0010 (2)
C20	0.034 (2)	0.045 (2)	0.055 (2)	0.003 (2)	-0.0052 (17)	-0.015 (2)
C21	0.053 (3)	0.052 (3)	0.035 (2)	0.006 (2)	0.0036 (19)	-0.0011 (19)
O22	0.0618 (18)	0.0291 (15)	0.0407 (16)	-0.0040 (14)	-0.0010 (13)	-0.0046 (12)
C23	0.070 (3)	0.035 (2)	0.039 (2)	-0.018 (2)	-0.001 (2)	-0.0034 (18)
O101	0.0498 (17)	0.0489 (18)	0.0337 (14)	0.0165 (14)	-0.0081 (12)	-0.0132 (12)
C102	0.034 (2)	0.038 (2)	0.034 (2)	0.0044 (17)	-0.0005 (16)	-0.0067 (17)
O103	0.0385 (15)	0.0420 (15)	0.0367 (14)	0.0062 (12)	-0.0059 (11)	-0.0133 (12)
C104	0.038 (2)	0.035 (2)	0.033 (2)	0.0003 (17)	0.0032 (16)	-0.0087 (16)
C105	0.039 (2)	0.034 (2)	0.0290 (19)	0.0018 (17)	0.0033 (16)	-0.0022 (16)
C106	0.043 (2)	0.031 (2)	0.0314 (18)	-0.0011 (17)	0.0072 (16)	0.0014 (15)
C107	0.033 (2)	0.034 (2)	0.0303 (19)	0.0008 (16)	0.0020 (15)	-0.0057 (16)
O108	0.0395 (13)	0.0340 (14)	0.0293 (13)	-0.0040 (12)	0.0048 (10)	-0.0065 (13)
C109	0.037 (2)	0.039 (2)	0.0310 (19)	-0.0071 (17)	0.0038 (16)	-0.0057 (16)
O110	0.0482 (16)	0.0351 (15)	0.0305 (13)	-0.0101 (12)	0.0081 (12)	-0.0061 (11)
C111	0.047 (2)	0.031 (2)	0.031 (2)	0.0025 (17)	0.0043 (17)	-0.0026 (16)
C112	0.051 (2)	0.031 (2)	0.0268 (19)	-0.0019 (18)	0.0058 (17)	-0.0039 (15)
C113	0.036 (2)	0.032 (2)	0.0291 (18)	-0.0013 (17)	-0.0023 (16)	-0.0030 (16)
C114	0.047 (2)	0.040 (2)	0.033 (2)	-0.0009 (19)	0.0068 (18)	-0.0068 (17)
C115	0.046 (2)	0.036 (2)	0.035 (2)	-0.0040 (18)	0.0020 (18)	-0.0010 (17)
C116	0.044 (2)	0.029 (2)	0.033 (2)	0.0036 (17)	-0.0062 (17)	-0.0038 (16)
C117	0.044 (2)	0.043 (2)	0.038 (2)	-0.0008 (19)	0.0136 (18)	-0.0103 (18)
C118	0.040 (2)	0.035 (2)	0.043 (2)	-0.0019 (18)	0.0066 (18)	-0.0076 (18)
Br119	0.0586 (3)	0.0541 (3)	0.0406 (2)	0.0124 (2)	-0.00977 (18)	0.0001 (2)
C120	0.038 (2)	0.052 (3)	0.068 (3)	0.001 (2)	0.006 (2)	-0.016 (2)
C121	0.061 (3)	0.060 (3)	0.031 (2)	-0.009 (2)	-0.003 (2)	0.002 (2)
0122	0.0602 (19)	0.0300 (15)	0.0386 (16)	0.0026 (13)	0.0018 (13)	-0.0065 (12)
C123	0.067 (3)	0.041 (2)	0.037 (2)	0.018 (2)	0.001 (2)	-0.0042 (19)

Geometric parameters (Å, °)

O1-C12 1.439 (4) O101-C112 1.436 (C2 O2 1.415 (4) C102 0.102	4) 4) 5)
	4) 5)
C205 1.415 (4) C1020105 1.421 (5)
C2—C13 1.499 (5) C102—C113 1.498 (/
C2—H21 1.000 C102—H1021 1.000	
O3—C4 1.433 (4) O103—C104 1.437 (4)
C4—C5 1.497 (5) C104—C105 1.486 (5)
C4—C12 1.524 (5) C104—C112 1.527 (5)
C4—H41 1.000 C104—H1041 1.000	
C5—C6 1.315 (5) C105—C106 1.320 (5)
C5—Br19 1.904 (4) C105—Br119 1.911 (1)
C6—C7 1.502 (6) C106—C107 1.503 (5)
C6—H61 1.000 C106—H1061 1.000	
C7—O8 1.432 (4) C107—O108 1.436 (4)

C7—C11	1.528 (5)	C107—C111	1.513 (5)
С7—Н71	1.000	C107—H1071	1.000
O8—C9	1.448 (4)	O108—C109	1.448 (4)
C9—O10	1.433 (4)	C109—O110	1.439 (4)
C9—C20	1.502 (5)	C109—C120	1.486 (6)
C9—C21	1.503 (5)	C109—C121	1.510 (5)
O10-C11	1.431 (4)	O110—C111	1.430 (4)
C11—C12	1.509 (5)	C111—C112	1.513 (5)
C11—H111	1.000	С111—Н1111	1.000
C12—H121	1.000	С112—Н1121	1.000
C13—C14	1.387 (5)	C113—C114	1.402 (5)
C13—C18	1.385 (5)	C113—C118	1.360 (5)
C14—C15	1.376 (6)	C114—C115	1.379 (5)
C14—H141	1.000	C114—H1141	1.000
C15—C16	1.391 (5)	C115—C116	1.386 (5)
C15—H151	1.000	C115—H1151	1.000
C16—C17	1.371 (5)	C116—C117	1.377 (5)
C16—O22	1.379 (4)	C116—O122	1.379 (4)
C17—C18	1.392 (5)	C117—C118	1.397 (5)
C17—H171	1.000	C117—H1171	1.000
C18—H181	1.000	C118—H1181	1.000
C20—H201	1.000	C120—H1201	1.000
C20—H202	1.000	С120—Н1202	1.000
C20—H203	1.000	С120—Н1203	1.000
C21—H211	1.000	C121—H1211	1.000
C21—H212	1.000	C121—H1212	1.000
C21—H213	1.000	C121—H1213	1.000
O22—C23	1.433 (4)	O122—C123	1.429 (5)
C23—H231	1.000	C123—H1231	1.000
C23—H232	1.000	C123—H1232	1.000
С23—Н233	1.000	С123—Н1233	1.000
C2	108.6 (3)	C102—O101—C112	109.0 (3)
O1—C2—O3	106.8 (3)	O101—C102—O103	106.1 (3)
O1—C2—C13	112.5 (3)	O101—C102—C113	111.5 (3)
O3—C2—C13	109.5 (3)	O103—C102—C113	110.3 (3)
O1—C2—H21	109.3	O101—C102—H1021	109.6
O3—C2—H21	109.3	O103—C102—H1021	109.6
С13—С2—Н21	109.3	С113—С102—Н1021	109.6
C2—O3—C4	107.8 (3)	C102—O103—C104	107.3 (3)
O3—C4—C5	113.0 (3)	O103—C104—C105	113.0 (3)
O3—C4—C12	102.1 (3)	O103—C104—C112	101.9 (3)
C5—C4—C12	112.7 (3)	C105—C104—C112	112.7 (3)
O3—C4—H41	109.6	O103—C104—H1041	109.7
C5—C4—H41	109.6	C105—C104—H1041	109.7
C12—C4—H41	109.6	C112—C104—H1041	109.7
C4—C5—C6	126.4 (4)	C104—C105—C106	126.5 (3)
C4—C5—Br19	113.9 (3)	C104—C105—Br119	113.9 (3)
C6—C5—Br19	119.7 (3)	C106—C105—Br119	119.5 (3)
C5—C6—C7	123.3 (3)	C105—C106—C107	122.7 (3)

С5—С6—Н61	118.4	C105-C106-H1061	118.7
С7—С6—Н61	118.4	C107—C106—H1061	118.7
C6—C7—O8	109.5 (3)	C106—C107—O108	110.7 (3)
C6—C7—C11	112.9 (3)	C106—C107—C111	113.1 (3)
O8—C7—C11	102.8 (3)	O108—C107—C111	102.3 (3)
С6—С7—Н71	110.5	C106—C107—H1071	110.1
O8—C7—H71	110.5	O108—C107—H1071	110.1
С11—С7—Н71	110.5	C111—C107—H1071	110.2
С7—О8—С9	109.2 (3)	C107—O108—C109	108.4 (3)
O8—C9—O10	104.9 (2)	O108—C109—O110	105.4 (3)
O8—C9—C20	109.3 (3)	O108—C109—C120	109.8 (3)
O10—C9—C20	108.9 (3)	O110—C109—C120	109.1 (3)
O8—C9—C21	108.5 (3)	O108—C109—C121	108.8 (3)
O10—C9—C21	111.4 (3)	O110-C109-C121	110.4 (3)
C20—C9—C21	113.4 (3)	C120—C109—C121	113.1 (4)
C9—O10—C11	106.2 (3)	C109—O110—C111	105.9 (3)
C7—C11—O10	101.5 (3)	C107—C111—O110	101.6 (3)
C7—C11—C12	116.5 (3)	C107—C111—C112	115.6 (3)
O10-C11-C12	107.5 (3)	O110—C111—C112	108.4 (3)
C7—C11—H111	110.3	C107—C111—H1111	110.3
O10-C11-H111	110.3	O110—C111—H1111	110.3
C12—C11—H111	110.3	C112—C111—H1111	110.3
C4—C12—C11	116.3 (3)	C104—C112—C111	116.6 (3)
C4—C12—O1	103.0 (3)	C104—C112—O101	103.6 (3)
C11—C12—O1	107.0 (3)	C111—C112—O101	106.9 (3)
C4—C12—H121	110.1	C104—C112—H1121	109.8
C11—C12—H121	110.1	C111—C112—H1121	109.8
O1—C12—H121	110.1	O101—C112—H1121	109.8
C2—C13—C14	121.7 (3)	C102—C113—C114	120.6 (3)
C2—C13—C18	119.9 (3)	C102—C113—C118	120.5 (3)
C14—C13—C18	118.4 (4)	C114—C113—C118	118.9 (3)
C13—C14—C15	121.3 (4)	C113—C114—C115	120.5 (4)
C13—C14—H141	119.4	C113—C114—H1141	119.8
C15—C14—H141	119.4	C115—C114—H1141	119.8
C14—C15—C16	119.7 (4)	C114—C115—C116	119.8 (4)
C14—C15—H151	120.2	C114—C115—H1151	120.1
C16—C15—H151	120.2	C116—C115—H1151	120.1
C15—C16—C17	119.9 (4)	C115—C116—C117	120.2 (4)
C15—C16—O22	115.6 (3)	C115—C116—O122	116.0 (3)
C17—C16—O22	124.5 (3)	C117—C116—O122	123.8 (3)
C16—C17—C18	119.9 (4)	C116—C117—C118	119.3 (4)
C16—C17—H171	120.1	C116—C117—H1171	120.3
С18—С17—Н171	120.0	C118—C117—H1171	120.3
C17—C18—C13	120.8 (4)	C117—C118—C113	121.3 (4)
C17—C18—H181	119.6	C117—C118—H1181	119.4
C13—C18—H181	119.6	C113—C118—H1181	119.4
С9—С20—Н201	109.5	C109—C120—H1201	109.5
С9—С20—Н202	109.5	C109—C120—H1202	109.5
H201—C20—H202	109.5	H1201—C120—H1202	109.5

С9—С20—Н203	109.5	C109—C120—H1203	109.5
H201—C20—H203	109.5	H1201—C120—H1203	109.5
H202—C20—H203	109.5	H1202—C120—H1203	109.5
С9—С21—Н211	109.5	C109—C121—H1211	109.5
С9—С21—Н212	109.5	C109—C121—H1212	109.5
H211—C21—H212	109.5	H1211—C121—H1212	109.5
С9—С21—Н213	109.5	C109—C121—H1213	109.5
H211—C21—H213	109.5	H1211—C121—H1213	109.5
H212—C21—H213	109.5	H1212—C121—H1213	109.5
C16—O22—C23	116.7 (3)	C116—O122—C123	116.9 (3)
O22—C23—H231	109.5	O122-C123-H1231	109.5
O22—C23—H232	109.5	O122—C123—H1232	109.5
H231—C23—H232	109.5	H1231—C123—H1232	109.5
O22—C23—H233	109.5	O122—C123—H1233	109.5
H231—C23—H233	109.5	H1231—C123—H1233	109.5
H232—C23—H233	109.5	H1232—C123—H1233	109.5

Fig. 3

